
in the vapor region, respectively; 
vapor in the state of saturation. 

I , ,  
t , relating to the parameters of the liquid and of the 

i. 
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. 
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HYDRODYNAMICS OF RIVULET FLOW ON A VERTICAL SURFACE 

I. M. Fedotkin, G. A. Mel'nichuk, 
F. F. Koval', and E. V. Klimkin 

UDC 536.248.5 

The flow of rivulets on a vertical surface is investigated theoretically and ex- 
perimentally. 

Liquid flow in the form of individual rlvulets occurs upon the breakup of a liquid film. 
Such a regime can occur, for example, in heat-transfer devices where heat is transferred 
through evaporation--condensation of the heat-transfer agent [1] and Inthe emergency film 
cooling of nuclear reactors. It is closely connected with the formation of dry patches on 
a heated surface [2]. As investigations showed [i, 2], in such a regime rather intense 
heat removal from the surface occurs without causing a sharp increase in its temperature. 

The majority of the research has been devoted to problems of the hydrodynamics and sta- 
billty of liquld film flow or the stability of rivulet flow [3-6]. 

The hydrodynamics of rivulet flow has still been inadequately studied. In [7], for 
example, the connection between the flow rate in a rivulet and its width was obtained on the 
basis of a solution of the Navier--Stokes equation for rivulet flow, and it was compared with 
experiment and showed only qualitative agreement. The problem of describing rivulet flow is 
divided into two parts: the first is to describe the shape of the surface of the rivulet; 
the second is to find the velocity distribution in the rivulet. 

In accordance with [7], we use the followlng physical model of rivulet flow. The shape 
of the rivulet is determined only by surface tension; we neglect gravity. The rivulet is 
represented in the form of a segment of a circle which does not vary during the entire flow. 
All the physical properties of the liquid remain constant. The rivulet moves uniformly in 
one direction under the action of gravity. We take the flow as fully developed and steady. 
Shear stresses at the interface are absent. 

The adopted physlcal model and coordinate system are shown in Fig. 1. Under the 
adopted assumptions the Navier--Stokes equations take the form 
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F i g .  1 .  

The b o u n d a r y  c o n d i t i o n s  w i l l  b s  

Diagram of  r i v u l e t  f low,  

dP dP 
= O, - -  -- O, 

dx dg 

dP 
= - - o g ,  

O~v + ~ v  = - - .  g-g- 

Ox z O# v 

v = O  at y = O ,  

. Ors 
- - 0  at x = O: 

Ox 

The c o n d i t i o n  of  the  absence  of  shear  s t r e s s e s  a t  the  i n t e r f a c e  can be  v r i t t e n  as 

(Z) 

(2) 

(3) 

(4) 

(5) 

a~ 
,, = o. (6) 

'On 

To f i n d  the  l i q u i d  f low r a t s  i n  a r i v u l e t  w i th  a g iven  wid th  and w s t t i n g  angle  one must 
s o l v e  Eq. (3) w i th  the  boundary  c o n d i t i o n s  ( 4 ) - ( 6 ) :  

t/2 v 

Q =  ~" .Iv(x; , )dxdy.  (7) 
--112 o 

Equat ions  ( 3 ) - ( 7 )  w i l l  have the  d lmsns lon leaa  f o r m  

O~V o~V 
OX----T + a---yT = - - I ,  (8) 

V = O  at Y = O , .  ( 9 )  

aV 
: 0  at X = O ,  ( 1 0 )  

OX 

OV = 0 (at the interface), (11) 
ON 

( 1 2 )  

o " (x;. ~exer ,  

where X = x / a ;  Y = y / a ;  1~ - n / a ;  V = p v / o ;  O = gttoQ/oa;  

I n  [7]  Eq. ( 8 )  was so lved  approx ima te ly  and on the  b a s i s  o f  the  assumption t h a t  

O~V o~V 
OX ~ << ay----- ~ . (13) 

whi le  under the  boundary c o n d i t i o n ,  

Olm 
�9 - -  = 0 (at the interface) (14) 
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TABLE i. Values of the Coefficients of the 
Polynomials P, and Pa for the Four Coordin- 
ate Functions 

the equation had the form 

Coordinate [ 
functions P, [ P, 

| 
! 

X~ 6, 53058021'10-3 I --9, 6425284"10-x 
X4y2 1,5102875.10-1 [ 1'1447087"I0-1 
Xsy8 2,55313S8.10 -1. 6,153968.10 -1 
XsY ~ 1,5945653.10 -1 3,9812201 

02V 
OY 2 + 1 O. (15) 

However, such an assumption [7]is valid only for a plane rivulet, such as occurs for a small 
wetting angle. This assumption can serve as a first approximation, since the law of varia- 
tion of the velocity along the x coordinate actually is parabolic. 

The method of R functions [8] is used to solve the Foisson differential equation (8) 
with the mixed boundary conditions (9)-(11). The most important feature of R functions is 
their "kinship" with functions of logic algebra, which results in the existence of additional 
properties of R functions permitting the introduction of the methods of discrete mathematics 
into the classical methods of continuous analysis. This permits the analytical allowance 
for the geometrical information (the shape of the boundary of the region and subregions, the 
interfaces between the media, etc.) contained in the statement of the boundary-value prob- 
lems. One can construct bundles of functions [8] satisfying the given boundary and initial 
conditions and containing the exact solution of the problem or a sufficiently good approxima- 
tion of it. An element of a bundle of functions is formalized using the concept of the 
structure of the solution of the boundary-value problem [9]. The structure of the solution 
allowing for the a priori conditions must be determined within the region. This leads to 
the need to extend into the region the functions and operators assigned at the boundary. 

For this purpose we introduce special operators with coefficients dependent on the 
shape of the region. In particular, the operators D_ and T perform extension of the cor- n n 
responding n-th-order derivatives normally and tangentially. 

The structure of the solution of the problem (8)-(11) has the form 

V = o : P x - - o [ D C Z ) ( o l P i  + m2P~)], (16) 

where ~ = ~,Aom2 ffi ~, + ~ffi--r + ~; here rio is an R conjunction; ~, ffi Y and us = [X a + 

(Y + d) (*)-R a] I/2R = 0 is the equation for the boundary of the rivulet; 

D~2' (c~ = (V~ V (c~ aa_x am~ a 
am2 (oiP1) + - -  (o:PI) 
ax aY aY 

is a linear differential operator while 

o; 4 o: 
P, = 2 2 = X c s ' r  

f = l  i= t  h = l  s = l  

a r e  power- law p o l y n o m i a l s  (Chebyshev and Legendre  p o l y n o m i a l s  can be u s e d ) .  The f u n c t i o n  
(16) s a t i s f i e s  the  boundary  c o n d i t i o n s  ( 9 ) - ( 1 1 ) .  

The unknown q u a n t i t i e s  i n  (16) a r e  t he  c o e f f i c i e n t s  Ci~ and Cks. They can be d e t e r -  
mined by one of  t he  v a r i a t i o n a l  methods  (we use  R i c c i ' s  metBod) .  The c o n d i t i o n s  of  a m i n i -  
mum of  t he  f u n c t i o n a l  

(17) 
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p e r i m e n t a l  v e l o c i t y  d i s t r i b u t i o n s  in  a r i v u l e t :  
a) shape of  a r i v u l e t  (experiment);  y ,  x,  . ! . ;  b) 
d i s t r i b u t i o n  of  v e l o c i t i e s  v (m/sec) over the x 
coordinate  (m); I )  experiment; II)  theory: 1) 
y = 50" I0-' m; 2) 100"10-6; 3) 150" i0-'; 4) 
200. i0-'; c) distribution of velocities v (m/ 
sec)  over t h e y  coordinate  (m): I )  experiment; 
II) theory: I)x = 2.8" I0 -s m; 2) 2.4" 10-s; 
3) 2.0" I0 -=. 
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Fig. 3. Dependence of the dimensionless rivu- 
let width P on the dimensionless flow rate G: 
I) calculation; 17) from [7]: 1) | = 10"; 2) 
20; 3) 30;. 4) 40. 

are 

c)J O J, 
o~C u dC h~ 

~ = 0  ( i =  1, n l ;  j = 1 - ~ ;  k = 1, nl; s = 1 ~ ) .  

They lead to  the s o l u t i o n  of  the system of  l i n e a r  a l g e b r a i c  equat ions ,  by s o l v i n g  which we 
f ind  Cij and Cks. 

The problem was so lved  on a BESM-6 computer. The i n t e g r a l s  (elements of  the Green's 
matrix)  were c a l c u l a t e d  by Gauss's  method w h i l e  the system of  a lgebra i c  equations  was so lved  
by the r o t a t i o n  method. The d i f f e r e n t i a t i o n  of  the coordinate  funct ions  was automated and 
carr ied  out e x a c t l y .  The machine time expended was from 2 to 12 rain, depending on the 
number of  coordinate  funct ions  (nl = 12, 16, 18) and the number of  i n t e g r a t i o n  nodes (n= = 
i0, 20, 40). 

The values of the coefficients t o  the four coordinate functions are presented in Table I. 

The velocity distribution in rlvulets was investigated experimentally using a laser 
Doppler velocity meter [10] by the scheme presented in [ii]. The laser radiation passed 
through a light divider and then was focused on the investigated point using a microscope 
obJ ectlve. 
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Light scattered by particles (d = 1-3 ~m) introduced into the liquid was received by a 
photomultiplier, while the electrical signal from the photomultiplier was sent to an ampli- 
fier and then to a spectrum analyzer, from which the Doppler frequency of the scattered 
light, appearing as a result of the motion of the particles, was determined. 

The velocity of liquid motion (since the particle density equals the liquid density 
and they are entrained by all the pulsations of the liquid) was determined from the equa- 
tion 

v -  - - ,  ( 1 8 )  (z 
2s in  

2 

where X is the wavelength of the laser radiation; ~ is the angle of intersection of the la- 
ser beams. 

The working section consisted of a plastic plate 25 X 600 mm in size. A porous baked 
metal insert, through which liquid was supplied to the plate from a constant-level tank, 
was mounted in the upper part of the plate flush wlth it. The liquid was circulated with a 
centrifugal pump. The flow rate was measured volumetrically in the range of 11-255 ml/min. 
The plate was set up vertically on a special micrometer table, allowing us to move it in two 
mutually perpendicular directions in the horizontal plane. 

The smallest movement permitted by the table in the horizontal plane was 10 ~m. The 
table also provided for vertical movement of the plate. At the start of a test the point 
of intersection of the beams was brought to the inner plane of the plate not occupied by 
the rivulet. The appearance of noise on the screen of the spectrum analyzer indicated the 
presence of the point of intersection on the inner wall. As the plate was moved in the 
horizontal direction, when the poin~ of intersection of the beams touched the edge of the 
stream there was a decrease in the noise level on the screen of the spectrum analyzer. This 
was due to the very small thickness of the stream, less than the resolving power in the 
transverse direction, which greatly altered the scattering indlcatrix. As the plate moved 
further in the horizontal direction the recovery of the scattering Indlcatrix, i.e., the 
recovery of the noise level, took place. When the opposite edge of the stream reached the 
point of intersection of the rays the noise level decreased. The difference in the readings 
on the dial of the table gave the width of the stream. In each test the stream width was 
divided into no less than five cross sections, in each Of which the velocity distribution 
was taken. The surface of the rivulet was determined from the dropout of the signal on the 
screen of The spectrum analyzer. 

The velocity profiles were measured with a constant flow rate and a constant rivulet 
width. The rivulet width and the velocity profile were measured in several cross sections 
along the stream and compiled into one series of data. 

The shape of a rivulet is shown in Fig. 2a and the velocity profiles in transverse 
(Fig. 2b) and longitudinal (Fig. 2c) cross sections. The difference between" the calculated 
and experimental values does not exceed 30Z. 

The difference between the experimental and theoretical results is evidently due to the 
presence of waves on the rivulet surface. According to [7], the transition to wavy flow oc- 
curs at Reynolds numbers Re = 20-40. Here we note that waves on a rivulet surface have a 
lesser influence on the width of the rivulet and more on the wetting angle. Therefore, the 
rivulet shape realized on the average approaches a segment of a circle. The theoretical 
dependence of the dimensionless flow rate on the dimensionless width of a rivulet, calcu- 
lated for different wetting angles, is presented in Fig. 3. The theoretical dependence of 
[7] is plotted in the same figure. A comparison of these two dependences shows that they 
coincide at small flow rates and small wetting angles. With an increase in flow rate and 
wetting angle, however, a deviation toward an increase in the authors' data is observed. 
This is due to the fact that, in contrast to [7], the two-dlmenslonal flow problem was 
solved. 

The velocity distribution in each cross section of a rivulet is described by an equa- 
tion analogous to that presented in [ii], the general form of which is 

V~ = A 9 -- B92, (19) 
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where A and B are empirical coefficients. 

In [11] Eq. (19) describes the flow of a thin liquid film in the same range of Reynolds 
numbers as in the present investigation. This indicates that flow along the Y coordinate in 
a rivulet in the given range of Reynolds numbers takes place independently of the transverse 
coo rd ina t e  X. 

In Fig .  4 we p r e sen t  the  dependence of the  d imens ion less  v e l o c i t y  on the d imens ion less  
coord ina te  y+ by analogy wi th  [11]. The expe r imen ta l  po in t s  f o r  the  two extreme Reynolds 
numbers a re  g e n e r a l i z e d  s a t i s f a c t o r i l y  by the  dependence p re sen ted  in  [11]: 

g+ = u + + O . 1 i l ( e x p O . 3 4 u + - - l ) .  
(20) 

NOTATION 

x, y, z, Cartesian coordinates; n, normal to the surface; P, pressure; v, velocity of 
rivulet flow; Z, rivulet width; p, liquid density; o, surface tension; g, free-fall accelera- 
tion; v, kinematic viscosity; Q, liquid flow rate in rivulet; fd, Doppler frequency; ~ =  
u, capillary constant; Re = 4Q/Iv, Reynolds number; A., R conjunction; R, radius of a segment 
of a circle; d, distance from the center of the circle to the middle of the chord of the seg- 
ment, particle diameter; ~, region of integration; v, = ~dynamic velocity; Tw, wall 
shear stress; y+ = vy/V, dimensionless coordinate; u + = v/v,, dimensionless velocity; 0, 
wetting angle. 
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